DeepMind 新 AI 算法能在多种棋盘游戏取得胜利

站长之家 2023-11-24 17:32:01新闻资讯
222

在最新的《自然》杂志上发表的一篇论文中,研究人员展示了一种名为「游戏学习者」(Student of Games)的新算法,这一人工智能(AI)程序结合了引导式搜索、机器学习和博弈论,成功在多种棋盘游戏中取得胜利。这一成就标志着 AI 技术在策略游戏领域的又一重大进步。

GOOGLE.webp.jpg

与此前的 AlphaZero 算法不同,后者只能解决完全信息游戏(如国际象棋和围棋),而在像德州扑克这样的不完全信息游戏中表现不佳。「游戏学习者」则能够跨越这一障碍,实现在多种游戏中的胜利。

此项研究起初由Google旗下 AI 研究部门DeepMind的专家们进行,但随后几位团队成员于 2022 年 1 月离开 Google,并在今年 1 月 Google 解散了剩余的大部分团队成员。

Finbarr Timbers,目前在 Midjourney 研究实验室工作,同时也是该研究的作者之一,解释说:「我们的算法能够基于游戏规则进行推理。例如,它学习所有这些游戏(国际象棋、扑克、围棋或苏格兰场),仅仅通过规则,而不需要更多信息。」他继续说道:「由此,它可以确定您应该采取的行动,以及您是否获胜。」

「游戏学习者」算法通过所谓的「反事实遗憾最小化」来确定每一步的行动。Timbers 解释说:「『遗憾』意味着『如果你进行了最优玩法,你本可以做得多好,减去你实际玩得有多好』。」

研究人员使用了美国数学家约翰·纳什提出的纳什均衡决策理论作为算法训练的基础,使其在大多数情况下找到最优策略。

「游戏学习者」算法作为一款由人工智能驱动的游戏算法,在该领域展现出了巨大的竞争力。它不仅拥有坚实的理论基础,还能够随着计算资源的增加而提高性能。

ai
THE END
tom
不图事事圆满 但图事事甘心。

相关推荐

Genkit:Google Firebase团队开发的统一全栈AI应用开发框架
Genkit 是由Google Firebase团队开发并投入生产的开源统一全栈AI应用开发框架,旨在为开发者提供一套完整的工具链和标准化接口,用于构建、测试和部署全栈AI驱动的应用程序。
2025-07-11 新闻资讯
225

SmolLM:Hugging Face推出的轻量高效多语言长上下文推理模型
SmolLM 是Hugging Face推出的"小而精"语言模型系列,其名称"Smol"源于"Small"的变体,直指其"以小搏大"的核心设计哲学。该项目始于SmolLM2的发布,最初定位为资源受限设备(如...
2025-07-11 新闻资讯
228

DiffuCoder:苹果公司与香港大学联合研发的并行化代码生成模型
DiffuCoder是苹果公司与香港大学联合研发的一款革命性代码生成模型,它突破了传统自回归语言模型(如GPT系列)必须按顺序生成代码的限制,采用掩码扩散模型(Masked Diffusio...
2025-07-10 新闻资讯
237

OmniSVG:全球首个端到端多模态可缩放矢量图形(SVG)生成模型
OmniSVG 是由复旦大学与阶跃星辰(StepFun)联合研发的全球首个端到端多模态可缩放矢量图形(SVG)生成模型,代表了当前AI生成矢量图形领域的最前沿技术突破。作为一项开源项目,...
2025-07-10 新闻资讯
241

HumanOmniV2:阿里巴巴通义实验室开源的多模态大语言模型
HumanOmniV2是阿里巴巴集团旗下通义实验室(Tongyi Lab)开源的多模态大语言模型,代表了当前人工智能领域在多模态推理与复杂意图理解方面的最前沿技术成果。作为HumanOmni系...
2025-07-10 新闻资讯
247

MetaStone-S1:融合深度推理与过程评分的反射生成模型
MetaStone-S1 是北京元石科技推出的反射生成式大模型,其核心创新在于提出了"反思型生成范式"(reflective generative paradigm),通过统一框架实现了推理生成与过程评估的协同...
2025-07-09 新闻资讯
264